inters;jl.

Application Note

This application note describes the routines for the control of
an X9408 or X9418 digitally controllable potentiometer. The
X9408, X9418 devices have a variety of different instructions
that provide flexibility to the designer. Additionally, the
nonvolatile nature of the device allows for stored wiper
positions that can be retrieved after power cycles.

The following code implements all of the available X9408,
X9418 instructions using a standard bi-directional bus
protocol. Although the subroutines occupy about 300 bytes of
program memory, designers who won't need to implement all
of the instructions can shorten the code by removing any
unnecessary routines. However, this will necessitate the
reassembly of the code.

For those instructions which program the nonvolatile data
registers (XFR_WCR, GXFR_WCR, & WRITE_DR),
acknowledge polling has been implemented to determine an
early completion of the internal write cycle. Although this is
automatically handled by the routines, a word or two
regarding the procedure should be informative. After issuing a
start condition, the master sends a slave address and
receives an acknowledge. It then issues an instruction byte to
the X9408, X9418 and again receives an acknowledge. If
necessary, it now transmits the data byte and receives a final
acknowledge. The master must then initiate a stop condition
which will cause the X9408, X9418 to begin an internal write
cycle. The X9408, X9418 pins go to high impedance until this
internal cycle is complete. The master can now begin

Interfacing the X9408, X9418 XDCP to 8051

Microcontrollers

AN1144.0
Author: Applications Staff

June 20, 2005

acknowledge polling by successively sending start conditions
followed by "dummy" instructions. When the X9408, X9418
finally answers with an acknowledge, the internal write cycle
has been completed. The master must then initiate a stop
condition. After the next start condition, the X9408, X9418 is
ready to receive further instructions.

In the code listing, an assumption was made that the code
executes upon a reset of the microcontroller. That is, the code
is loaded into low memory, however this can be changed with
an ORG assembler directive. Simple MAIN program routines
are included in the code listing. These can be modified for
different device addresses, different registers and different
DCPs within the device.

In this listing, the commands cause an X9408, X9418 (at
A3A2A1A0 = 1100 to be accessed.) The listing also includes
some instructions that are specific to the Cygnal 80C51
processor. These should be examined and modified, as
needed, for the specific 80C51 in the system. The commands
issued in the “Main” section of the code are simple
assignment and call sequences.

In Figure 1, a representative hardware connection between
the X9408 and an 8051 family microcontroller is shown. The
pull-up resistors on the SDA and SCL lines are determined by
the total capacitance of all of the devices connected to the
bus, which is about 18pF.

R2
10K

N
R1
10K
U1
39 {roo PLO |
S Po1 P15
${po2 P12 |3
3= P03 P13 |z
32| P04 P14 g
32 {ros P15 |2
o [0 P16 |4
P0.7 P17
2| 21
17 |INT 15
17 1{Ro P22 |23
14| rRxD P23 |5z
170 P24 |22
i, b
16 1R p27 |28
T G
X2 PSEN
3 EAave
RST
80C51

u2
Ydsc v 2—
SDA VWO |5—
VLo [H—
1
L g —
wwi [
VL1
vH2 2
w2 |5
viz [
18 22
5 | A3 VH3 57—
Hr2 w35
551 AL w3 F=—
A0 .
vee
o[22
19 |\ oo Vr 13
X940
1 8

-5V <K~

FIGURE 1. CONNECTING THE X9408 TO AN 80C51 MICROCONTROLLER

1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.

Copyright Intersil Americas Inc. 2005. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

Application Note 1144

80C51 MICROCONTROLLER ROUTINES FOR MANIPULATING AN X9408

80C51 M CROCONTROLLER ROUTI NES FOR MANI PULATI NG AN X9408
QUAD EEPOT

(C) INTERSIL I NC. 2002

FILE NAME : X9408_8051. TXT
TARGET MCU: Cygnal CB051F000
DESCRI PTI ON:

Thi s code provides basic 80C51 code for commmuni cating with and
controlling the X9408 quad digital potentiometer. In this listing

is code that inplenents all of the avail able X9408 instructions.

The X9408 conmmunicates via a 2-wire bus that is simlar, but alittle
different fromthe |2C bus. This code is very generic and can be
simplified and shortened by renobving any unnecessary routines.

For those instructions which programthe nonvol atile data registers
(XFR_WCR, GFXR WCR, and WRI TE_DR) this program provi des acknow edge
polling to deternmine early conpletion of the internal wite cycle.

Al t hough this is handl ed automatically by the routines, sone background
nm ght be hel pful .

After issuing a start condition, the master sends a sl ave address

and recei ves and acknowl edge (ACK). The nmaster then sends an instruction
byte to the X9408 and agai n recei ves an ACK. |If necessary, the naster sends

a data byte and receives a final ACK. The master then initiates a stop
condition to signal the X9408 to begin an internal nonvolatile wite

cycle. When the wite cycle begins, the I/Opins go to a high inpedance state
and remain in this state until the nonvolatile wite is conplete.

I mredi ately followi ng the stop condition, the master can begi n acknow edge
pol I i ng by successively sending start conditions, followed by "dummy"
instructions. Wien the X9408 finally answers wi th an acknow edge, the
internal wite cycle is conpleted. The master then i ssues a stop
condition. After the next start condition, the X9408 is ready to receive
further instructions.

This code give the flexibility to comunicate with up to 16 different X9408
devi ces on the sane bus. It does this by using a register, naned "ADDR BYTE"
This register is | oaded with the specific slave address and address of the
desi red X9408 devi ce. The regi ster can be saved if there is only one X9408
on the bus, by maki ng ADDR _BYTE a constant.

An 80C51 register is used to identify the particul ar X9408 register or DCP, or both,
are used for a particular operation. There are various constants avail able for

easy selection of the WCR and DR conbi nati on. The contents of the register

i s appended to the specific instruction in the "instr_gen' routine

A register is used as a counter for keeping track of the nunber of bits sent
in each byte.

A register is used for the increnment/decrenent instruction to specify up or
down novenent of the wi per. For each command, the master | oads the "PULSES"
register with a direction bit and 6 bits of count. If the MSBis a 1

the wi per increments the specified nunber of tap positions. If the MSB

is a0 the wiper decrenents the specified nunber of tap positions.

A register is used to hold the specific comand bei ng executed. This all ows
the instruction to be built up and sent to the X9408.

In the MAIN section are sanpl e nai n code segnents showi ng how to use the
vari ous subroutines.

This code was tested on a Cygnal 80C51 microcontroller, using the Cygna
tools. The specific routines required to set up the Cygnal processor

2 il‘lte"sil AN1144.0
— June 20, 2005

Application Note 1144

are identified and are probably not needed for other standard 8051 devi ces.
Si nce each 8051 may have specific requirenents that are not handled in this
code, the programrer is advised to check the setup needs of the specific
80C51 derivation that is being used.

$i ncl ude (c8051f000. i nc);

; 80C51 pin used AS SCL
; 80C51 pin used AS SDA

Include regsiter definition file (Cygnal).

TEMP equ ri ; Scratch register

COUNT equ r2 ; Loop counting register

PULSES equ r3 ; Bits -> DIR O ###### (#=pulses = 0 to 64)
COVIVAND equ r4 ; Instruction (I.E 0,4,8,12,16,...)

I D equ rs ; Bits -> 0000 Rl RO P1 PO

ADDR_BYTE equ ré ; Bits -> 0101 A3 A2 A1 AO

DATA BYTE equ rv ; Bits -> CMDWD5 D4 D3 D2 D1 DO

SLAVE_ADRO equ 050h
SLAVE_ADR1 equ 051h
SLAVE_ADR2 equ 052h
SLAVE_ADR3 equ 053h
SLAVE_ADR4 equ 054h
SLAVE_ADR5 equ 055h
SLAVE_ADR6 equ 056h
SLAVE_ADR7 equ 057h
SLAVE_ADR8 equ 058h
SLAVE_ADR9 equ 059h
SLAVE_ADR10 equ 05Ah
SLAVE_ADR11 equ 05Bh
SLAVE_ADR12 equ 05Ch
SLAVE_ADR13 equ 05Dh
SLAVE_ADR14 equ 05Eh
SLAVE_ADR15 equ 05Fh
WCR 0 equ 00h
WCR 1 equ 01h
WCR 2 equ 02h
WCR_3 equ 03h
DR O equ 00h
DR 1 equ 04h
DR 2 equ 08h
DR_3 equ 0Ch
DCPO_RO equ 00h
DCPO_R1 equ 04h
DCPO_R2 equ 08h
DCPO_R3 equ 0Ch
DCP1_RO equ 01h
DCP1_R1 equ 05h
DCP1_R2 equ 09h
DCP1_R3 equ ODh
DCP2_RO equ 02h
DCP2_R1 equ 06h
DCP2_R2 equ 0Ah
3 AN1144.0

intersil

June 20, 2005

Application Note 1144

DCP2_R3
DCP3_RO
DCP3_RL
DCP3_R2
DCP3_R3

READWCR
VRl TEWCR
READDR
V\RI TEDR
XFRDR
XFRWCR
GXFRDR
GXFRWCR

equ OEh
equ 03h
equ 07h
equ 0Bh
equ OFh
equ 0

equ 4

equ 8

equ 12
equ 16
equ 20
equ 24
equ 28

| NCDECW PER equ 32

equ 060H

; Stack top

; RESET and | NTERRUPT VECTORS

ljnp main

; Locate a junp to the start of code at

' CODE SEGVENT

Code_Seg segment CODE
rseg Code_Seg
usi ng

Switch to this code segnent.
Specify regi ster bank for the foll ow ng
pr ogram code.

NAME: execute
FUNCTI ON: Det ermi nes whi ch X9408 instruction is issued,

t hen execut es

I NPUTS: COMVAND

CALLS: read _wer,

' OUTPUTS:

none

read dr, wite wer, wite dr, xfr_dr,

xfr_wer, gxfr_dr, gxfr_wcr, inc_w per
AFFECTED: DPTR, A

execut e:
nov dptr,#first ; Get Base Address
nov a, COWWAND ; Junmp O f set
jmp @+dpt r ; Junp to instruction handl er
first:
cal l read_wcr ; COMVAND #0
ret
cal l wite wer ; COMVAND #4
ret
cal | read_dr ; COMVAND #8
ret
cal l write_dr : COVMAND #12
ret
cal l xfr_dr : COVMAND #16
ret
- - AN1144.0
4 _ll‘ltrel's“ June 20, 2005

Application Note 1144

call xfr_wer ; COVIVAND #20
(r:g} I gxfr_dr ; COMVAND #24
Lgf I gxfr_wer ; COMVAND #28
Egil i nc_w per ; COMVAND #32
re

The foll owi ng routines handl e each X9408 i nstructi on.
These are called by the "execute" routine.

read_wcrReads a WCR and returns its val ue i n DATA BYTE

wite wrWites the value in DATA BYTE to a WCR

read_dr Reads a Data Register and returns its value i n DATA BYTE
wite drwites the value in DATA BYTE to a data register
xfr_drTransfers the value in a data register to its WR
xfr_werTransfers the value in a WCRto one of its data registers
gxfr_drd obal transfer of data registers to WCRs

gxfr_werd obal transfer of WCRs to Data Registers

inc_w perSingle Step Increment/Decrenment of wi per position for WCR

FUNCTI ON: Appends bits Rl, RO, Pl1, PO to the appropriate
Instruction code and passes the instruction byte to the
I nstruction Generator.

I NPUTS: I D

QUTPUTS: NONE

CALLS: instr_gen

AFFECTED: 1D, A DPTR

read_wecr:
nov a,|D ; Get bits x x P1 PO
orl a, #090h ; Append to read WCR i nstruction code
nov I D, a : Save the result
nov dptr, #casel ; Junp to the base addr for this instruciton
cal | i nstr_gen
ret
wite_wer:
nov a,|D ; Get bits x x P1 PO
orl a, #0A0h ; Append to Wite WCR i nstruction code
nov ID a ; Save the result
nov dptr, #case2 ; Junp to the base addr for this instruction
cal | i nstr_gen
ret
read_dr:
nov a,|D ; Get bits RL RO P1 PO
orl a, #0BOh ; Append to Read DR instruction code
nov ID a ; Save the result
nov dptr, #casel ; Junp to the base addr for this instruction
cal | i nstr_gen
ret
wite_dr:
nov a,lD ; Get bits R1 RO P1 PO
orl a, #0Q0h ; Append to Wite DR instruction code
nov ID, a : Save the result
nov dptr, #case3 ; Junp to the base addr for this instruction
cal | i nstr_gen
ret
xfr_dr:
nov a,lD ; Get bits R1 RO P1 PO
orl a, #0D0Oh : Append to the XFR DR instruction code
nov ID, a ; Save the result

5 il‘lte"sil AN1144.0
— June 20, 2005

Application Note 1144

nov dptr,#case4 ; Junp to the addr for this instruction

cal | i nstr_gen
ret

xfr_wer:
nov a,|D ; Get bits RL RO P1 PO
orl a, #0EOh ; Append to the XFR WCR i nstruction code
nov ID, a ; Save the result
nov dptr, #case5 ; Junp to the addr for this instruction
cal | i nstr_gen
ret

gxfr_dr:
nov a, D : Get bits RL RO x x
orl a, #010h ; Append to the GXFR DR instruction code
nov ID, a : Save the result
nov dptr, #cased4 ; Junp to the addr for this instruction
cal | i nstr_gen
ret

gxfr_wer:
nov a,|D ; Get bits RL RO x x
orl a, #080h ; Append to the GXFR WCR i nstruction code
nov ID, a ; Save the result
nov dptr, #case5 ; Junp to the addr for this instruction
cal | i nstr_gen
ret

i nc_w per:
nov a, | D ; Get bits x x P1 PO
orl a, #020h ; Append to the Incr Wper instruction code
nov ID a ; Save the result
nov dptr, #case6 ; Junp to the addr for this instruction
cal | i nstr_gen
ret

NAME: instr_gen (lInstruction generator)

FUNCTI ON: | ssues appropriate | 2C protocol for each X9408 instruction
| NPUTS: ADDR BYTE, |D, PULSES, DPTR, DATA BYTE

QUTPUTS: DATA BYTE

CALLS: start_cond, stop_cond, send_byte, send_bit, get_byte, polling
AFFECTED: DATA BYTE, A, COUNT

i nstr_gen:
cal l start_cond ; Issue an |2C start condition
nov a, ADDR BYTE ; Send X9408 sl ave/ address byte
call send_byte
jc stop_gen ; i f NACK, end...
nov a,|D ; Send X9408 instruction byte
call send_byte
jc stop_gen ; i T NACK, end...
clr a ; Reset offset before junp
jmp @ +dptr ; Junp to various instruction cases
case6:
nov a, PULSES ; A<- Bits DOR X D5 D4 D3 D2 D1 DO
anl a, #00111111b ; A <- Bits 0 0 D5 D4 D3 D2 D1 DO
nov COUNT, a ; Save as the nunber of pul ses

nov a, PULSES
anl a, #10000000b ; A<- Bits DOR0 000000

call send_bit ; Send the bit (a single pulse)
djnz COUNT,w per_Ip ; Continue until all pulses are sent

6 il‘lte"sil AN1144.0
— June 20, 2005

Application Note 1144

jmmp stop_gen ; If programgets here, then it is done
case2:
nov a, DATA BYTE ; Send X9408 data byte
call send_byte
jmp stop_gen
casel:
cal | get _byte ; Receive X9408 Data Byte
jmp stop_gen
case3d:
nov a, DATA BYTE ; Send X9408 Data Byte
call send_byte
call stop_cond ; I'ssue a stop condition
cal | pol I'i ng ; Begi n Acknowl edge Pol |ling
jmp stop_gen
caseb:
call stop_cond ; I'ssue a stop condition
cal | pol I i ng ; Begi n Acknowl edge Pol ling
st op_gen:
call stop_cond ; 12C Transm ssi on Over!
ret

; NAME: send_byte

; FUNCTI ON: Sends 8 bits (fromMsB to LSB) to SDA and reads 1 bit from SDA
; INPUTS: A

; OUTPUTS: NONE

; CALLS: send_bit, get_bit

; AFFECTED: COUNT, TEMP, A

send_byt e:
nov COUNT, #8 ; Set loop for 8 repetitions
nov TEMP, a ; store as shifted byte (no shift)
bit_| oop:
nov a, TEMP ; Retrieve | ast saved shifted byte
anl a, #10000000b ; Mask for MSB (Most Significant Bit)
cal l send_bit : Place this bit on SDA
next _bit:
nov a, TEMP ; Retrieve | ast saved shifted byte
ri a ; Rotate all bits 1 position left
nov TEMP, a ; Store this updated shifted byte
djnz COUNT, bit_I oop
setb SDA ; let SDA go high after 8th bit
cal | cl ock ; When all 8 bits done, read SDA |ine
; (ACKnow edge pul se)
ret

; NAVE: send_bit

; FUNCTION: Places a bit on SDA and initiates a clock pul se on SCL
; INPUTS: A

;. QUTPUTS: NONE

; CALLS: clock

; AFFECTED: SDA

send_bit:
clr SDA : Pull SDA Low
jz sent _zero ; Should SDA really be LOANP

7 il‘lte"sil AN1144.0
— June 20, 2005

Application Note 1144

setb SDA ; I'f Not, pull SDA H CH
sent _zero:
cal l cl ock ; Initiate a clock pul se
ret
NAME: cl ock

; FUNCTI ON: | ssues a LOMH G+ LOWcl ock pul se of sufficient duration
; & reads SDA during the high phase, just in case its needed

;I NPUTS: NONE

; QUTPUTS: C

; CALLS: NONE

; AFFECTED. SCL, C

cl ock:
nop ; Let SDA Set-up
setb SCL ; Pull SCL HI GH and hol d
nop
nop
nop
nov c, SDA ; Move SDA bit into carry flag
clr SCL ; Pull SCL LOW
ret

; NAME: get _byte

; FUNCTI ON: Receives 8 bits fromSDA (MsB to LSB) and sends 1 bit to SDA
; I NPUTS: NONE

; OUTPUTS: DATA BYTE

CALLS: clock, send_bit
AFFECTED: COUNT, SDA, A, DATA BYTE

get _byte:
setb SDA ; Receiver shouldn't drive SDA | ow
nov COUNT, #8 ; Set Loop count to 8 repetitions
get _| oop:
cal | cl ock ; Clock in the current bit
ric a ; Reconstruct byte using left shifts

dj nz COUNT, get _| oop
nov DATA BYTE,a ; Store retrieved Byte for user

clr a ; A <- LOWN(Sending a 0)
call send_bit ; Send an acknowl edge
ret

; NAME: start_cond (Start Condition)
: FUNCTI ON: | ssues an | 2C bus start condition
;I NPUTS: NONE

;. OQUTPUTS: NONE
; CALLS: NONE

; AFFECTED. SDA, SCL

start _cond:

setb SDA ; Pull SDA H GH and al | ow set -up
setb SCL ; Pull SCL H GH and hol d
nop
nop
nop
nop
clr SDA ; Pul | SDA LOW (SCL=HI GH) and hol d
8 —lntrerSI I J uneAZI\é)T 124(;162

Application Note 1144

nop
nop
nop
nop
clr SCL
ret

; Conpl ete cl ock pul se

NAME: stop_cond (Stop condition)

FUNCTI ON: | ssues an | 2C bus stop condition
| NPUTS: NONE

QUTPUTS: NONE

CALLS: NONE

AFFECTED: SDA, SCL

st op_cond:

AFFECTED: A
ack_send:
clr a ; A <- LOWN(Sending a 0)
cal l SEND BI T ; Send the bit!
ret

clr SDA ; Pull SDA LOWand hol d
setb SCL : Pull SCL HI GH and hol d
nop

nop

setb SDA ; Pull SDA H GH (SCL=HI GH)

NAME: ack_send (Send Acknow edge)

FUNCTI ON: Sends an acknow edge bit to conplete SDA |ine data reads
| NPUTS: NONE

QUTPUTS: NONE

CALLS: send_bit

NAME: pol ling (Acknow edge pol ling for XFR WCR, WRI TE DR, GXFR_WCR)

FUNCTI ON: Sends dummy conmands to X9408 during an internal wite cycle
so that the end of the cycle is marked by an acknow edge

| NPUTS: ADDR_BYTE

QUTPUTS: NONE

CALLS: start_cond, send_byte

AFFECTED:. C

pol I'i ng:

cal | START_COND ; Re-establish |12C protocol
nov a, ADDR BYTE ; Attenpt to send a dummy comand

agai n:
call SEND BYTE
jc POLLI NG ; If C=1, then there was no ACK
ret

PUT NMAI N PROGRAM HERE. . .

9 | intersil

AN1144.0
June 20, 2005

Application Note 1144

; Bel owar e sanpl e mai n prograns cal | i ngthevarious conmand routi nes

nov SP, #STACK TOP; Initialize stack pointer

The foll owi ng section is required for the Cygnal processor. This could
change for different versions of the 80C51.

Di sabl e the WDT. (1 RQ not enabled at this point.)

If interrupts were enabl ed, they woul d need to be explicitly disabled
so that the 2nd nove to WDTCN occurs no nore than four clock

cycles after the first nove to WDTCN.

clr EA ; Disable interupts

nov WDTCN, #ODEh; Cygnal processor specific
nov WDTCN, #OADh; Cygnal processor specific

; Enable the Port 1/0O Crossbar
nov XBR2, #40h ; Cygnal processor specific (enable weak pull ups)

nov PRT1CF, #00h ; Cygnal processor specific
; Set no ports as push-pull (this processor
; operates from3.3V, but the X9408 operates from
; 5V, so the 8051 outputs nust be pulled up to 5V
; With external resistors.)

: The foll owi ng are sanpl e code segnents for use in the main program..
; The potentioneter was AO-A3 pins were set to address 0Ch.

nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte
nov ID, #WCR 2 ; Specify WCR for DCP#2

nov COWAND, #WRI TEWCR;, Wite to WCR

nov DATA BYTE, #43; Set wiper position to tap 43

cal | execut e

read_fromwcr:
nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte

nov ID, #WCR 2 ; Specify WCR for DCP#2

nov COWAND, #READWCR; Read WCR

cal | execute ; WCR val ue is in DATA _BYTE
wite_ 2 dr:

nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte
nov | D, #DCP2_R1; Specify DR#1 for DCP#2

nov COWAND, #WRI TEDR;, Wite to DR

nov DATA BYTE, #21; Set data value to 21

cal | execut e

read fromdr:
nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte
nov | D, #DCP2_R1; Specify DR#1 for DCP#2
nov COWAND, #READDR; Read DR
cal | execute ; DR value is in DATA BYTE

nov_dr_2_wcr:
nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte
nov | D, #DCP2_R1; Specify DR#1l to WCR of DCP#2
nov COVMAND, #XFRDR; Transfer DR to WR

10 intersil AN1144.0
— June 20, 2005

Application Note 1144

cal l execut e

nmov_wer 2 dr:
nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte
nov | D, #DCP2_R1; Specify WCR to DR#1 of DCP#2
nmov COWAND, #XFRWCR; Transfer WCRt o DR
cal | execut e

gl obal _dr_2 wer:
nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte

nmov I D, #DR 1 ; Specify DR#1 to WCR
nov COVWVAND, #GXFRDR; Transfer DR to WCR
cal l execut e

gl obal _wcr_2_dr:
nov ADDR _BYTE, #SLAVE_ADR12; Load Sl ave address byte

nov ID, #DR 1 ; Specify WCR to DR#1 of DCP#2
mov COWAND, #GXFRWCR; Transfer WCRto DR
cal | execut e

decr_wi per:
nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte
nmov I D, #WCR 2 ; Sel ect DCP#2
nov PULSES, #O0Fh; Decrenent DCP#2 for 16 pul ses
nov COWWAND, #| NCDECW PER; | NC wi per

cal | execut e

i ncr_wi per:
nov ADDR BYTE, #SLAVE_ADR12; Load Sl ave address byte
nov I D, #WCR 2 ; Sel ect DCP#2

nov PULSES, #8Fh; Increment DCP#2 for 16 pul ses
nov COWWAND, #| NCDECW PER; DEC wi per
cal | execut e

END

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to

verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com

11 | intersil

AN1144.0
June 20, 2005

